TiO2 nanowire electron transport pathways inside organic photovoltaics.

نویسندگان

  • Pinyi Yang
  • Diane K Zhong
  • Mingjian Yuan
  • Andrew H Rice
  • Daniel R Gamelin
  • Christine K Luscombe
چکیده

Charge transport is one of the five main steps in the operation of organic photovoltaics, but achieving balanced hole and electron transport with high mobility has been challenging in devices. Here, we report improved charge transport in organic photovoltaics via incorporation of nanostructured inorganic electron transport materials into the active layers of devices. Co-depositing TiO2 nanowires with the organic active layer solution embeds the nanowires directly within active layers of the solar cell. The ability of these nanowires to transport electrons is compared with neat P3HT:PCBM active layers and also devices containing TiO2 nanotube aggregates. Incorporation of TiO2 nanowires yields a six-fold increase in the electron mobility relative to unmodified devices, leading to a 19% improvement in the power conversion efficiency. Lower energetic disorder of the film and more balanced charge transport are also observed upon incorporating TiO2 nanowires. These advantageous effects correlate with the TiO2 nanowire length.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Charge transport in TiO2 ÕMEH-PPV polymer photovoltaics

We study the effect of polymer thickness, hole mobility, and morphology on the device properties of polymer-based photovoltaics consisting of MEH-PPV as the optically active layer, TiO2 as the exciton dissociation surface, and ITO and Au electrodes. We demonstrate that the conversion efficiency in these polymerbased photovoltaics is primarily limited by the short exciton diffusion length combin...

متن کامل

Band-Edge Engineered Hybrid Structures for Dye-Sensitized Solar Cells Based on SnO2 Nanowires

In this report, we show for the first time that SnO2 nanowire based dye sensitized solar cells exhibit an open circuit voltage of 560mV, which is 200mV higher than that using SnO2 nanoparticle based cells. This is attributed to the more negative flat band potential of nanowires compared to the nanoparticles as determined by open circuit photo voltage measurements made at high light intensities....

متن کامل

ZnO Nanowires and Their Application for Solar Cells

Nanowires (NW) are defined here as metallic or semiconducting particles having a high aspect ratio, with cross-sectional diameters « 1 ┤m, and lengths as long as tens of microns. Well-aligned one-dimensional nanowire arrays have been widely investigated as photoelectrodes for solar energy conversion because they provide direct electrical pathways ensuring the rapid collection of carriers genera...

متن کامل

Polymorphic transformations and optical properties of graphene-based Ag-doped titania nanostructures.

TiO2 is the most studied semiconductor material for photovoltaics and photocatalyst applications, but due to a very large electron hole recombination process it is difficult to use it as a photovoltaics material. In this context graphene-decorated Ag-doped TiO2 nanostructures have been synthesized by a simple, cost effective chemical method. In this paper, we have studied the structural transfo...

متن کامل

TiO2/BiVO4 Nanowire Heterostructure Photoanodes Based on Type II Band Alignment.

Metal oxides that absorb visible light are attractive for use as photoanodes in photoelectrosynthetic cells. However, their performance is often limited by poor charge carrier transport. We show that this problem can be addressed by using separate materials for light absorption and carrier transport. Here, we report a Ta:TiO2|BiVO4 nanowire photoanode, in which BiVO4 acts as a visible light-abs...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 15 13  شماره 

صفحات  -

تاریخ انتشار 2013